Leveraging Information Systems for Disaster Management
In today’s digital age, natural as well as man-made disaster management has become an easier task. Several IT features are at our disposal, which can help in both prevention and recovery from disaster. Information technology advances such as satellite communication, the Internet, remote sensing, geographic information system (GIS), etc. have proven extremely valuable in hazard reduction planning and execution processes (Vyas & Desai, 2007). IT has been employed in the fields of business disaster recovery, continuity planning, risk management, and continuous monitoring.
Risk management
Generally, activities in emergency and risk management are separated into two categories: pre-event (preparation, mitigation) and 2) post-event (recovery, response). In the preparation stage, simulation and modeling exercises are crucial and can facilitate prevention, mitigation and adaptation. In the field of geographic information systems, applications in water-resource management have most effectively utilized its analytical abilities for developing simulation runs and biophysical models (like Hydraulic and Hydrological Models (HEC-RAS andMIKE11). When integrated, these systems can forecast flood behavior, by deriving inputs of different terrain, hydro-meteorological datasets, and land use or land cover; in a way, these function as SDSS (Spatial Decision Support Systems) (Zlatanovaa, Ghawanab, Kaurb & Neuvelc, 2014).
The planning stage is generally initiated with locating and identification of possible disaster sites (at-risk places). Via a GIS, threats are recognized, and evaluation of potential disasters’/emergencies’ consequences is begun. Hazard-mapping (flood zones, earthquake faults, avalanche, landslide, etc.) is conducted, taking into consideration key infrastructure (residential areas, buildings, hospitals, schools, streets, storage facilities, power lines, pipelines, etc.) at risk, followed by formulation of preparedness, response, mitigation, and potential recovery requirements by relevant authorities. This process makes clear the lives, environmental values, and property at great risk from possible disaster/emergency. Public safety authorities can identify and concentrate on the places wherein mitigation will be required, places where response should be reinforced, the focus of preparedness, and required recovery efforts. GIS eases this process, through enabling planners to look at suitable spatial data combinations by means of computer-generated mapping (Stephenson and Peter, 1997).
At the response stage, the abovementioned information combined with non-spatial and spatial infrastructural information may be utilized for improving response efficiency. Response units’ route optimization on the basis of real-time information of disaster-affected regions can be resource- and time-efficient while responding. The disaster-hit territories’ satellite images offer information regarding the area and extent of impact. In case of floods, Volume or Depth data from earlier-run simulations can be utilized by the agencies concerned to ascertain possible water volume/depth in flood regions, as well as the likelihood of other regions getting impacted because of the water reaching those regions (Zlatanovaa et al., 2014).
ii. Continuous monitoring
In the last 10 years, nations and regions have significantly advanced in EWS (Early Warning Systems) development and implementation. A major part of this improvement is because of better information and communication technology (ICT), improved monitoring and observational systems, and greater public awareness with regard to emergency risk reduction’s importance. An example that demonstrates the value of extending EWS coverage is that of Bangladesh, which has, currently, a two-day cyclone warning system at hand for enabling individuals to evacuate from homes and withdraw to storm shelters many hours prior to cyclones making landfall, thereby appreciably decreasing death toll. Three-hundred thousand people lost their lives to the Cyclone Bhola in 1970, in comparison to 3,000 deaths by Cyclone Sidrin 2007; both events were reported by authorities to be of similar magnitudes. Even where risks that have greater complexity and longer development times (e.g., droughts), EWS helps with keeping death toll low, across regions like Africa’s Sub-Sahara (Carabine & Jones, 2015). There are EWS technology examples that include weather forecasting — A large number of nations today have in place, early warning techniques that utilize weather forecasts, giving important details days, weeks, even months ahead and communicating warnings to related local stakeholders. The systems are grounded on high-tech weather models; they are particularly helpful in preparation for extreme climate.
With rapid, worldwide spread of mobile networks and cell phones, cell-phone technology has become another means that is progressively adopted for providing warning and coordinating preparedness activities; SMS (Short Message Service), in particular, is used extensively for disseminating mass messages. One example where SMS has been integrated into disaster warning systems is Japan – on detecting early earthquake signs, Japanese agencies disseminate SMS warnings to every single registered cell phone user in the nation. Crowd-sourced data also finds increasing use, with greater number of people having access to the internet and ICTs (like, mobile phones). The technique was employed on a large scale while responding to an earthquake in Haiti in 2010, enabling mapping specialists, locals, and other relevant stakeholders to transmit information on what they heard or viewed at the disaster site and generate information helpful to humanitarian workers (Carabine & Jones, 2015).
Personal multimedia recorders and surveillance methods can offer a much richer, more applicable data source for disaster scientists, compared to large-scale sensors. The former means offer the proximal account, with no errors seeping in with alteration and fading of witnesses’ memories with time. Moreover, the data procured from them may apply more to the context of social research, rather than to records of physical phenomena’s quantitative sensor information. Surveillance cameras had an important part to play in the deconstruction of numerous 9/11 events, including evacuation timeline and the World Trade Center’s structural failures. Following the great tsunami in the Indian Ocean in December 2004, University of Buffalo teams could quickly capture and attain perishable data regarding lifeline and building damage characteristics via a compact surveying mechanism, integrating GPS (global positioning satellite), personal videography and satellite photograph recording. Informal disaster recordings form a highly important alternate information source on disasters (Moss & Townsend, 2006).
iii. Business continuity planning
Businesses invest a great deal of monetary, physical, time and human resources towards ensuring success of their ventures, still, a large number of company owners fail when it comes to adequately planning and preparing for disasters. The Institute for Business and Home Safety (IBHS) reports that, approximately 25% of businesses are unable to restart operations after any major catastrophe. Organizational owners can defend and maintain their business, if they effectively identify risks linked to disasters, natural as well as man-made, and develop an action plan to put into operation if a disaster occurs; regularly updating these plans will ensure business survival (Stephenson and Peter, 1997; Kaviani & Rajabifard, 2014).
State-of-the-art surveillance and sensing technologies may provide a means to escape this quandary. In disasters that have occurred of late, the new-found ability of reconstructing exhaustive maps and timelines of the calamity has increased through an explosion in development of surveillance and sensing equipment in natural and constructed environments. Digital networks of communication leave traces of the Internet, cell phones, and other such societal “nervous systems,” within and near disaster areas (Kaviani & Rajabifard, 2014).
The first step in protection of a company is, knowing how disasters can be identified. Disasters come in various forms –ranging from environmental (natural) disasters, like fires and floods, to technological cataclysms capable of wiping out whole computer systems. Every sort of disaster isn’t relevant to a company — it is imperative that company owners recognize which kinds of disasters have the ability to hinder/stop company operations. After establishing this, development of EWS for detecting potential threats is the next key stage. EWS can include weather-change-monitoring software devices or constant evaluation methods (Kaviani & Rajabifard, 2014; Zlatanovaa et al., 2014).
iv. Business disaster recovery
Proper communication between affected individuals/groups, emergency operations facilities, frontline responders and broadcasting systems, is crucial in the wake of an emergency. The communication link proves essential for the purpose of: evaluating needs and destruction; gathering data resources such as supplies; coordinating relief/rescue efforts; encouraging response from institutions, political agencies and the public; and accounting for those who are missing. Strong communication infrastructure is required in regions that are disaster-prone. After the January 2001 earthquake in Gujarat, communication infrastructure in the affected regions was severely damaged. A competent communications unit, however, swiftly evaluated the community’s communication requirements and restored elementary communication infrastructure before long (Yodmani & Hollister, 2001).
Disaster recovery in case of businesses hinges on their Business Recovery strategies — documents employed by organizations as guides for maintaining order if hit by a disaster, ensuring employee safety, and facilitating business continuity after the disaster, for minimizing corporate holdups, as per the United States Federal Emergency Management Agency. The above strategies reflect what must be done by a firm to remain afloat, the resources and tools that must be procured or available, and allocation of responsibilities among different persons in the organization. The effectiveness of this plan is dependent on the level of preparation of the team, the level of orderliness maintained in the team, and amount of coordination among team members (Zlatanovaa et al., 2014).
v. The benefits, new advances, and future trend of technologies in disaster management
Disaster management technologies have improved emergency preparedness efforts; response activities can help minimize injuries, minimize/avert environmental impacts, protect neighbors and staff, and minimalize operations stoppage and asset losses. A good disaster preparedness-response initiative will: (1) evaluate likelihood of emergencies/accidents; (2) avert incidents and connected environmental effects; (3) respond to incidents with the use of emergency techniques and strategies; (4) periodically test the above techniques and strategies; and (5) mitigate impacts of disasters and accidents (Zlatanovaa et al., 2014; Yodmani & Hollister, 2001).
Evolving trends have unlocked numerous technological and scientific skills and resources for lowering disaster risk. The major applications that may be employed in disaster management are: 1) Internet 2) Remote Sensing and Geographic Information Systems (Vyas & Desai, 2007).
Advanced, real-time free data sharing at the time of disasters is anticipated to mark a change, and reform management of disaster response. Currently there are phone calls, one-day-old situation reports, and several data sources relied upon for critical decision-making. This is akin to the traditional stock market — earlier, stock prices would be displayed one day late in newspapers, as compared with the current integrated system that accords instantaneous access to even marginal ups and downs in stocks, thereby instantaneously delivering crucial data required for making key decisions to concerned parties. Disaster response in future must have a similar system, and there must be a shift in critical data interchange practices of agencies in a real-time, open way, with information made readily available to those whose lives and livelihood depend on it (Moss & Townsend, 2006; Vyas & Desai, 2007).
The importance given to informal, personal recordings in the field of disaster research is expected to radically rise over the next 20 years. Consumer electronics firms expect to sell “life recorders,” combining multimedia sensing and tremendous storage capacity. These devices would probably be able to incorporate day-long audio and video recordings, annotated via telemetry through other devices and context sensors such as social setting (others in the vicinity), location, and, perhaps even the emotional state of people. A decade or so into the future, these kinds of devices will also progressively be capable of recognizing individuals and objects in their range of view, as well as relate this data to remote servers through wireless networks. Disasters in future will likely be overcome by hordes of non-professional archivists recording the events that unfolded in a bottom-up direction (Moss & Townsend, 2006).
vi. Challenges in properly applying technologies in disaster management
A number of developing nations have failed to perceive the advantages of the aforementioned technologies; accessing the remotest and most susceptible of regions still proves to be an extremely challenging task. Out of 133 nations that were surveyed in a 2011 poll, barely more than a quarter reported possessing EWS coverage. Concurrently, there has been a rapid shift in risks, with demographic, political and economic transformations causing marked modifications in risk landscape. Even when there is ready availability of disaster risk data, institutional and obstacles may hinder EWS efficiency. Thus, several major challenges remain to be dealt with (Stephenson and Peter, 1997).
Access to information on disaster risk does not guarantee early, efficient response. Communities should support effective responses, to enable EWS to save lives, property and livelihoods. This is a challenge, since:
There is no timely action taken locally in the wake of early warnings.
There is a lack of established response methods that the communities as well as the agency issuing warnings are familiar with. This occurs when EWS is not regularly tested or used.
Communities are unaware of hazards’ consequences, thereby failing to value forecasts and warning information
Communities don’t trust the agency that issues warnings. Unfamiliarity with the agency or the EWS system makes gaining their trust a tough task. Incorrect warnings or false alerts can reduce agency credibility, resulting in warnings going unheeded when a real disaster does strike (Kaviani & Rajabifard, 2014).
References
Carabine, E. & Jones, L. (February 2015). Early warning systems and disaster risk information. Overseas Development Institute
Kaviani A. & Rajabifard A. (2014).VGS-based framework for disaster response; Coordinates, Volume X, October 2014
Moss, M.L. & Townsend, A.M. (May 2006). Disaster Forensics: Leveraging Crisis Information Systems for Social Science. New Technologies and the Future of Disaster Research
Stephenson, R. and Peter, S.A. (1997).Disasters and the Information Technology Revolution. Disasters 21-4: 305-334.
Vyas, T. & Desai, A. (February 2007). Information technology for disaster management. Proceedings of National Conference; INDIACom-2007
Yodmani, S. & Hollister, D. (May 2001). Disasters and Communication Technology: Perspectives from Asia. Presented at the Second Tampere Conference on Disaster Communications
Zlatanovaa, S., Ghawanab, T., Kaurb, A. & Neuvelc, J.M.M. (2014). Integrated Flood Disaster Management and Spatial Information: Case Studies of Netherlands and India. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-8
Get Professional Assignment Help Cheaply
Are you busy and do not have time to handle your assignment? Are you scared that your paper will not make the grade? Do you have responsibilities that may hinder you from turning in your assignment on time? Are you tired and can barely handle your assignment? Are your grades inconsistent?
Whichever your reason is, it is valid! You can get professional academic help from our service at affordable rates. We have a team of professional academic writers who can handle all your assignments.
Why Choose Our Academic Writing Service?
- Plagiarism free papers
- Timely delivery
- Any deadline
- Skilled, Experienced Native English Writers
- Subject-relevant academic writer
- Adherence to paper instructions
- Ability to tackle bulk assignments
- Reasonable prices
- 24/7 Customer Support
- Get superb grades consistently
Online Academic Help With Different Subjects
Literature
Students barely have time to read. We got you! Have your literature essay or book review written without having the hassle of reading the book. You can get your literature paper custom-written for you by our literature specialists.
Finance
Do you struggle with finance? No need to torture yourself if finance is not your cup of tea. You can order your finance paper from our academic writing service and get 100% original work from competent finance experts.
Computer science
Computer science is a tough subject. Fortunately, our computer science experts are up to the match. No need to stress and have sleepless nights. Our academic writers will tackle all your computer science assignments and deliver them on time. Let us handle all your python, java, ruby, JavaScript, php , C+ assignments!
Psychology
While psychology may be an interesting subject, you may lack sufficient time to handle your assignments. Don’t despair; by using our academic writing service, you can be assured of perfect grades. Moreover, your grades will be consistent.
Engineering
Engineering is quite a demanding subject. Students face a lot of pressure and barely have enough time to do what they love to do. Our academic writing service got you covered! Our engineering specialists follow the paper instructions and ensure timely delivery of the paper.
Nursing
In the nursing course, you may have difficulties with literature reviews, annotated bibliographies, critical essays, and other assignments. Our nursing assignment writers will offer you professional nursing paper help at low prices.
Sociology
Truth be told, sociology papers can be quite exhausting. Our academic writing service relieves you of fatigue, pressure, and stress. You can relax and have peace of mind as our academic writers handle your sociology assignment.
Business
We take pride in having some of the best business writers in the industry. Our business writers have a lot of experience in the field. They are reliable, and you can be assured of a high-grade paper. They are able to handle business papers of any subject, length, deadline, and difficulty!
Statistics
We boast of having some of the most experienced statistics experts in the industry. Our statistics experts have diverse skills, expertise, and knowledge to handle any kind of assignment. They have access to all kinds of software to get your assignment done.
Law
Writing a law essay may prove to be an insurmountable obstacle, especially when you need to know the peculiarities of the legislative framework. Take advantage of our top-notch law specialists and get superb grades and 100% satisfaction.
What discipline/subjects do you deal in?
We have highlighted some of the most popular subjects we handle above. Those are just a tip of the iceberg. We deal in all academic disciplines since our writers are as diverse. They have been drawn from across all disciplines, and orders are assigned to those writers believed to be the best in the field. In a nutshell, there is no task we cannot handle; all you need to do is place your order with us. As long as your instructions are clear, just trust we shall deliver irrespective of the discipline.
Are your writers competent enough to handle my paper?
Our essay writers are graduates with bachelor's, masters, Ph.D., and doctorate degrees in various subjects. The minimum requirement to be an essay writer with our essay writing service is to have a college degree. All our academic writers have a minimum of two years of academic writing. We have a stringent recruitment process to ensure that we get only the most competent essay writers in the industry. We also ensure that the writers are handsomely compensated for their value. The majority of our writers are native English speakers. As such, the fluency of language and grammar is impeccable.
What if I don’t like the paper?
There is a very low likelihood that you won’t like the paper.
Reasons being:
- When assigning your order, we match the paper’s discipline with the writer’s field/specialization. Since all our writers are graduates, we match the paper’s subject with the field the writer studied. For instance, if it’s a nursing paper, only a nursing graduate and writer will handle it. Furthermore, all our writers have academic writing experience and top-notch research skills.
- We have a quality assurance that reviews the paper before it gets to you. As such, we ensure that you get a paper that meets the required standard and will most definitely make the grade.
In the event that you don’t like your paper:
- The writer will revise the paper up to your pleasing. You have unlimited revisions. You simply need to highlight what specifically you don’t like about the paper, and the writer will make the amendments. The paper will be revised until you are satisfied. Revisions are free of charge
- We will have a different writer write the paper from scratch.
- Last resort, if the above does not work, we will refund your money.
Will the professor find out I didn’t write the paper myself?
Not at all. All papers are written from scratch. There is no way your tutor or instructor will realize that you did not write the paper yourself. In fact, we recommend using our assignment help services for consistent results.
What if the paper is plagiarized?
We check all papers for plagiarism before we submit them. We use powerful plagiarism checking software such as SafeAssign, LopesWrite, and Turnitin. We also upload the plagiarism report so that you can review it. We understand that plagiarism is academic suicide. We would not take the risk of submitting plagiarized work and jeopardize your academic journey. Furthermore, we do not sell or use prewritten papers, and each paper is written from scratch.
When will I get my paper?
You determine when you get the paper by setting the deadline when placing the order. All papers are delivered within the deadline. We are well aware that we operate in a time-sensitive industry. As such, we have laid out strategies to ensure that the client receives the paper on time and they never miss the deadline. We understand that papers that are submitted late have some points deducted. We do not want you to miss any points due to late submission. We work on beating deadlines by huge margins in order to ensure that you have ample time to review the paper before you submit it.
Will anyone find out that I used your services?
We have a privacy and confidentiality policy that guides our work. We NEVER share any customer information with third parties. Noone will ever know that you used our assignment help services. It’s only between you and us. We are bound by our policies to protect the customer’s identity and information. All your information, such as your names, phone number, email, order information, and so on, are protected. We have robust security systems that ensure that your data is protected. Hacking our systems is close to impossible, and it has never happened.
How our Assignment Help Service Works
1. Place an order
You fill all the paper instructions in the order form. Make sure you include all the helpful materials so that our academic writers can deliver the perfect paper. It will also help to eliminate unnecessary revisions.
2. Pay for the order
Proceed to pay for the paper so that it can be assigned to one of our expert academic writers. The paper subject is matched with the writer’s area of specialization.
3. Track the progress
You communicate with the writer and know about the progress of the paper. The client can ask the writer for drafts of the paper. The client can upload extra material and include additional instructions from the lecturer. Receive a paper.
4. Download the paper
The paper is sent to your email and uploaded to your personal account. You also get a plagiarism report attached to your paper.
PLACE THIS ORDER OR A SIMILAR ORDER WITH US TODAY AND GET A PERFECT SCORE!!!
